U
    [ShG                     @   sF
  d ddddddddd	d
dddddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~ddddddddddddddddddddddddddddddddddddddddddddddd<dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd ddddddddd	d
dddddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddÐdĐdŐdƐdǐdȐdɐdʐdːd̐d͐dΐdϐdАdѐdҐdӐdԐdՐd֐dאdؐdِdڐdېdܐdݐdސdߐddddddddddddddddddddddddddddddddd ddddddddd	d
dddddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6d7d8d9d:d;d<d=d>d?d@dAdBdCdDdEdFdGdHdIdJdKdLdMdNdOdPdQdRdSdTdUdVdWdXdYdZd[d\d]d^d_d`dadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydzd{d|d}d~dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddÐdĐdŐdƐdd
ddȐdɐdʐdːd̐d͐dΐdϐdАdѐdҐdӐdԐdՐd֐dאdؐdِdڐdېdܐddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.dd5d/d3d0d4d1dސdߐdddddddddddddddddddddddddddddZ dS (  ~z\pounds z\yen z\S z\neg z\pm z\P z\times z\eth z\div z\imath z\jmath z\Gamma z\Delta z\Theta z\Lambda z\Xi z\Pi z\Sigma z	\Upsilon z\Phi z\Psi z\Omega z\alpha z\beta z\gamma z\delta z\varepsilon z\zeta z\eta z\theta z\iota z\kappa z\lambda z\mu z\nu z\xi z\pi z\rho z
\varsigma z\sigma z\tau z	\upsilon z\varphi z\chi z\psi z\omega z
\vartheta z\phi z\varpi z	\digamma z
\varkappa z\varrho z	\epsilon z\backepsilon z\quad z\, z\| z\dagger z	\ddagger z\bullet z\ldots z\prime z\backprime z\: z
\mathbb{C}z\mathcal{H}z\mathfrak{H}z
\mathbb{H}z\hslash z\mathcal{I}z\Im z\mathcal{L}z\ell z
\mathbb{N}z\wp z
\mathbb{P}z
\mathbb{Q}z\mathcal{R}z\Re z
\mathbb{R}z
\mathbb{Z}z\mho z\mathfrak{Z}z\mathcal{B}z\mathfrak{C}z\mathcal{E}z\mathcal{F}z\Finv z\mathcal{M}z\aleph z\beth z\gimel z\daleth z\leftarrow z	\uparrow z\rightarrow z\downarrow z\leftrightarrow z\updownarrow z	\nwarrow z	\nearrow z	\searrow z	\swarrow z\nleftarrow z\nrightarrow z\twoheadleftarrow z\twoheadrightarrow z\leftarrowtail z\rightarrowtail z\mapsto z\hookleftarrow z\hookrightarrow z\looparrowleft z\looparrowright z\leftrightsquigarrow z\nleftrightarrow z\Lsh z\Rsh z\curvearrowleft z\curvearrowright z\circlearrowleft z\circlearrowright z\leftharpoonup z\leftharpoondown z\upharpoonright z\upharpoonleft z\rightharpoonup z\rightharpoondown z\downharpoonright z\downharpoonleft z\rightleftarrows z\leftrightarrows z\leftleftarrows z\upuparrows z\rightrightarrows z\downdownarrows z\leftrightharpoons z\rightleftharpoons z\nLeftarrow z\nLeftrightarrow z\nRightarrow z\Leftarrow z	\Uparrow z\Rightarrow z\Downarrow z\Leftrightarrow z\Updownarrow z\Lleftarrow z\Rrightarrow z\rightsquigarrow z\dashleftarrow z\dashrightarrow z\forall z\complement z	\partial z\exists z	\nexists z
\emptyset z\nabla z\in z\notin z\ni z\prod z\coprod z\sum -z\mp z	\dotplus z\slash z\smallsetminus z\ast z\circ z\surd z	\sqrt[3] z	\sqrt[4] z\propto z\infty z\angle z\measuredangle z\sphericalangle z\mid z\nmid z
\parallel z\nparallel z\wedge z\vee z\cap z\cup z\int z\iint z\iiint z\oint z\therefore z	\because :z\sim z	\backsim z\wr z\nsim z\eqsim z\simeq z\cong z\ncong z\approx z
\approxeq z\asymp z\Bumpeq z\bumpeq z\doteq z\Doteq z\fallingdotseq z\risingdotseq z\eqcirc z\circeq z\triangleq z\neq z\equiv z\leq z\geq z\leqq z\geqq z\lneqq z\gneqq z\ll z\gg z	\between z\nless z\ngtr z\nleq z\ngeq z	\lesssim z\gtrsim z	\lessgtr z	\gtrless z\prec z\succ z\preccurlyeq z\succcurlyeq z	\precsim z	\succsim z\nprec z\nsucc z\subset z\supset z
\subseteq z
\supseteq z\nsubseteq z\nsupseteq z\subsetneq z\supsetneq z\uplus z
\sqsubset z
\sqsupset z\sqsubseteq z\sqsupseteq z\sqcap z\sqcup z\oplus z\ominus z\otimes z\oslash z\odot z\circledcirc z\circledast z\circleddash z	\boxplus z
\boxminus z
\boxtimes z\boxdot z\vdash z\dashv z\top z\bot z\models z\vDash z\Vdash z\Vvdash z\nvdash z\nvDash z\nVdash z\nVDash z\vartriangleleft z\vartriangleright z\trianglelefteq z\trianglerighteq z
\multimap z
\intercal z\veebar z
\barwedge z
\bigwedge z\bigvee z\bigcap z\bigcup z	\diamond z\cdot z\star z\divideontimes z\bowtie z\ltimes z\rtimes z\leftthreetimes z\rightthreetimes z\backsimeq z
\curlyvee z\curlywedge z\Subset z\Supset z\Cap z\Cup z\pitchfork z	\lessdot z\gtrdot z\lll z\ggg z\lesseqgtr z\gtreqless z\curlyeqprec z\curlyeqsucc z	\npreceq z	\nsucceq z\lnsim z\gnsim z
\precnsim z
\succnsim z\ntriangleleft z\ntriangleright z\ntrianglelefteq z\ntrianglerighteq z\vdots z\cdots z\ddots z\lceil z\rceil z\lfloor z\rfloor z
\ulcorner z
\urcorner z
\llcorner z
\lrcorner z\frown z\smile z\bracevert z\lmoustache z\rmoustache z\arrowvert z\overbrace z\underbrace z
\circledR z
\circledS z\blacktriangle z\bigtriangleup z\triangleright z\blacktriangledown z\bigtriangledown z\triangleleft z	\Diamond z	\lozenge z	\bigcirc z\square z\blacksquare z	\bigstar z\spadesuit z\heartsuit z\diamondsuit z
\clubsuit z\flat z	\natural z\sharp z\checkmark z	\maltese z\perp z\diagup z
\diagdown z\langle z\rangle z\lgroup z\rgroup z\longleftarrow z\longrightarrow z\longleftrightarrow z\Longleftarrow z\Longrightarrow z\Longleftrightarrow z\longmapsto z\blacklozenge z
\setminus z	\bigodot z
\bigoplus z\bigotimes z
\biguplus z
\bigsqcup z\iiiint z\amalg z\doublebarwedge z
\leqslant z
\geqslant z\lessapprox z\gtrapprox z\lneq z\gneq z
\lnapprox z
\gnapprox z\lesseqqgtr z\gtreqqless z\eqslantless z\eqslantgtr z\preceq z\succeq z
\precneqq z
\succneqq z\precapprox z\succapprox z\precnapprox z\succnapprox z\subseteqq z\supseteqq z\subsetneqq z\supsetneqq z\Box z
\mathbf{A}z
\mathbf{B}z
\mathbf{C}z
\mathbf{D}z
\mathbf{E}z
\mathbf{F}z
\mathbf{G}z
\mathbf{H}z
\mathbf{I}z
\mathbf{J}z
\mathbf{K}z
\mathbf{L}z
\mathbf{M}z
\mathbf{N}z
\mathbf{O}z
\mathbf{P}z
\mathbf{Q}z
\mathbf{R}z
\mathbf{S}z
\mathbf{T}z
\mathbf{U}z
\mathbf{V}z
\mathbf{W}z
\mathbf{X}z
\mathbf{Y}z
\mathbf{Z}z
\mathbf{a}z
\mathbf{b}z
\mathbf{c}z
\mathbf{d}z
\mathbf{e}z
\mathbf{f}z
\mathbf{g}z
\mathbf{h}z
\mathbf{i}z
\mathbf{j}z
\mathbf{k}z
\mathbf{l}z
\mathbf{m}z
\mathbf{n}z
\mathbf{o}z
\mathbf{p}z
\mathbf{q}z
\mathbf{r}z
\mathbf{s}z
\mathbf{t}z
\mathbf{u}z
\mathbf{v}z
\mathbf{w}z
\mathbf{x}z
\mathbf{y}z
\mathbf{z}ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyzz\mathcal{A}z\mathcal{C}z\mathcal{D}z\mathcal{G}z\mathcal{J}z\mathcal{K}z\mathcal{N}z\mathcal{O}z\mathcal{P}z\mathcal{Q}z\mathcal{S}z\mathcal{T}z\mathcal{U}z\mathcal{V}z\mathcal{W}z\mathcal{X}z\mathcal{Y}z\mathcal{Z}z\mathfrak{A}z\mathfrak{B}z\mathfrak{D}z\mathfrak{E}z\mathfrak{F}z\mathfrak{G}z\mathfrak{J}z\mathfrak{K}z\mathfrak{L}z\mathfrak{M}z\mathfrak{N}z\mathfrak{O}z\mathfrak{P}z\mathfrak{Q}z\mathfrak{S}z\mathfrak{T}z\mathfrak{U}z\mathfrak{V}z\mathfrak{W}z\mathfrak{X}z\mathfrak{Y}z\mathfrak{a}z\mathfrak{b}z\mathfrak{c}z\mathfrak{d}z\mathfrak{e}z\mathfrak{f}z\mathfrak{g}z\mathfrak{h}z\mathfrak{i}z\mathfrak{j}z\mathfrak{k}z\mathfrak{l}z\mathfrak{m}z\mathfrak{n}z\mathfrak{o}z\mathfrak{p}z\mathfrak{q}z\mathfrak{r}z\mathfrak{s}z\mathfrak{t}z\mathfrak{u}z\mathfrak{v}z\mathfrak{w}z\mathfrak{x}z\mathfrak{y}z\mathfrak{z}z
\mathbb{A}z
\mathbb{B}z
\mathbb{D}z
\mathbb{E}z
\mathbb{F}z
\mathbb{G}z
\mathbb{I}z
\mathbb{J}z
\mathbb{K}z
\mathbb{L}z
\mathbb{M}z
\mathbb{O}z
\mathbb{S}z
\mathbb{T}z
\mathbb{U}z
\mathbb{V}z
\mathbb{W}z
\mathbb{X}z
\mathbb{Y}z\Bbbk z
\mathsf{A}z
\mathsf{B}z
\mathsf{C}z
\mathsf{D}z
\mathsf{E}z
\mathsf{F}z
\mathsf{G}z
\mathsf{H}z
\mathsf{I}z
\mathsf{J}z
\mathsf{K}z
\mathsf{L}z
\mathsf{M}z
\mathsf{N}z
\mathsf{O}z
\mathsf{P}z
\mathsf{Q}z
\mathsf{R}z
\mathsf{S}z
\mathsf{T}z
\mathsf{U}z
\mathsf{V}z
\mathsf{W}z
\mathsf{X}z
\mathsf{Y}z
\mathsf{Z}z
\mathsf{a}z
\mathsf{b}z
\mathsf{c}z
\mathsf{d}z
\mathsf{e}z
\mathsf{f}z
\mathsf{g}z
\mathsf{h}z
\mathsf{i}z
\mathsf{j}z
\mathsf{k}z
\mathsf{l}z
\mathsf{m}z
\mathsf{n}z
\mathsf{o}z
\mathsf{p}z
\mathsf{q}z
\mathsf{r}z
\mathsf{s}z
\mathsf{t}z
\mathsf{u}z
\mathsf{v}z
\mathsf{w}z
\mathsf{x}z
\mathsf{y}z
\mathsf{z}z
\mathtt{A}z
\mathtt{B}z
\mathtt{C}z
\mathtt{D}z
\mathtt{E}z
\mathtt{F}z
\mathtt{G}z
\mathtt{H}z
\mathtt{I}z
\mathtt{J}z
\mathtt{K}z
\mathtt{L}z
\mathtt{M}z
\mathtt{N}z
\mathtt{O}z
\mathtt{P}z
\mathtt{Q}z
\mathtt{R}z
\mathtt{S}z
\mathtt{T}z
\mathtt{U}z
\mathtt{V}z
\mathtt{W}z
\mathtt{X}z
\mathtt{Y}z
\mathtt{Z}z
\mathtt{a}z
\mathtt{b}z
\mathtt{c}z
\mathtt{d}z
\mathtt{e}z
\mathtt{f}z
\mathtt{g}z
\mathtt{h}z
\mathtt{i}z
\mathtt{j}z
\mathtt{k}z
\mathtt{l}z
\mathtt{m}z
\mathtt{n}z
\mathtt{o}z
\mathtt{p}z
\mathtt{q}z
\mathtt{r}z
\mathtt{s}z
\mathtt{t}z
\mathtt{u}z
\mathtt{v}z
\mathtt{w}z
\mathtt{x}z
\mathtt{y}z
\mathtt{z}z\mathbf{\Gamma}z\mathbf{\Delta}z\mathbf{\Theta}z\mathbf{\Lambda}z\mathbf{\Xi}z\mathbf{\Pi}z\mathbf{\Sigma}z\mathbf{\Upsilon}z\mathbf{\Phi}z\mathbf{\Psi}z\mathbf{\Omega}z\mathit{\Gamma}z\mathit{\Delta}z\mathit{\Theta}z\mathit{\Lambda}z\mathit{\Xi}z\mathit{\Pi}z\mathit{\Sigma}z\mathit{\Upsilon}z\mathit{\Phi}z\mathit{\Psi}z\mathit{\Omega}z
\mathbf{0}z
\mathbf{1}z
\mathbf{2}z
\mathbf{3}z
\mathbf{4}z
\mathbf{5}z
\mathbf{6}z
\mathbf{7}z
\mathbf{8}z
\mathbf{9}z
\mathsf{0}z
\mathsf{1}z
\mathsf{2}z
\mathsf{3}z
\mathsf{4}z
\mathsf{5}z
\mathsf{6}z
\mathsf{7}z
\mathsf{8}z
\mathsf{9}z
\mathtt{0}z
\mathtt{1}z
\mathtt{2}z
\mathtt{3}z
\mathtt{4}z
\mathtt{5}z
\mathtt{6}z
\mathtt{7}z
\mathtt{8}z
\mathtt{9}(                                i1  i7  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i  i   i   i   i   i    i!   i"   i&   i2   i5   i_   i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i$!  i'!  i(!  i,!  i-!  i0!  i1!  i2!  i3!  i5!  i6!  i7!  i8!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i!  i "  i"  i"  i"  i"  i"  i"  i"  i	"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i "  i!"  i""  i#"  i$"  i%"  i&"  i'"  i("  i)"  i*"  i+"  i,"  i-"  i."  i4"  i5"  i6"  i<"  i="  i@"  iA"  iB"  iC"  iE"  iG"  iH"  iJ"  iM"  iN"  iO"  iP"  iQ"  iR"  iS"  iV"  iW"  i\"  i`"  ia"  id"  ie"  if"  ig"  ih"  ii"  ij"  ik"  il"  in"  io"  ip"  iq"  ir"  is"  iv"  iw"  iz"  i{"  i|"  i}"  i~"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i"  i#  i	#  i
#  i#  i#  i#  i#  i#  i"#  i##  i#  i#  i#  i#  i#  i#  i$  i$  i%  i%  i%  i%  i%  i%  i%  i%  i%  i%  i%  i&  i`&  ia&  ib&  ic&  im&  in&  io&  i'  i '  i'  i'  i'  i'  i'  i'  i'  i'  i'  i'  i'  i'  i'  i'  i)  i)  i *  i*  i*  i*  i*  i*  i?*  i^*  i}*  i~*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i*  i+  i  i i i i i i i i i	 i
 i i i i i i i i i i i i i i i i i i i i i i  i! i" i# i$ i% i& i' i( i) i* i+ i, i- i. i/ i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i: i; i< i= i> i? i@ iA iB iC iD iE iF iG iH iI iJ iK iL iM iN iO iP iQ iR iS iT iV iW iX iY iZ i[ i\ i] i^ i_ i` ia ib ic id ie if ig i i i i i i i i i i i i i i i i i i i i i i i	 i
 i i i i i i i i i i i i i i i i i i  i! i" i# i$ i% i& i' i( i) i* i+ i, i- i. i/ i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i; i< i= i> i@ iA iB iC iD iF iJ iK iL iM iN iO iP i\ i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ip iq ir is it iu iv iw ix iy iz i{ i| i} i~ i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i  i i i i i i i i i	 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i N)Zuni2tex_table rA   rA   R/root/rtd-docs/venv/lib/python3.8/site-packages/docutils/utils/math/unichar2tex.py<module>	   sJ        